

Q5.—Q6.—Q7.

Page-84

- **50.** $|A^{-1}| \neq |A|^{-1}$, where A is non-singular matrix.
- Sol. False

We know that $|A^{-1}| = |A|^{-1}$, where A is a non-singular matrix.

- 51. If A and B are matrices of order 3 and |A| = 5, |B| = 3, then $|3AB| = 27 \times 5 \times 3 = 405$.
- Sol. True.

We know that, $|AB| = |A| \cdot |B|$ and $|kA| = k^n |A|$, where k is scalar and n is order of matrix A

$$|3AB| = 3^3|AB| = 27|A| \cdot |B| = 27 \times 5 \times 3 = 405$$

- 52. If the value of a third order determinant is 12, then the value of the determinant formed by replacing each element by its co-factor will be 144.
- Sol. True

Let A is the determinant.

Given
$$|A| = 12$$

Also, we know that, if A is a square matrix of order n, then $|adj A| = |A|^{n-1}$. For n = 3, $|adj A| = |A|^{3-1} = |A|^2 = (12)^2 = 144$